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a b s t r a c t

Resonant ejection for mass analysis with ion traps is widely used because it markedly improves the mass
range and resolution of ion traps. Unfortunately, an easy-to-use analytical expression that defines the
ejection mass as a function of the trapping and excitation frequencies is missing in the literature because
the secular frequency of the ions in sinusoidal ion traps is not easily determined for all stable values of
eywords:
on trap mass spectrometry
esonance ejection
igital ion trap
inusoidal ion trap

qz from the Mathieu equation. However, the ion secular frequency for all stable values of qz in digital ion
traps can be readily determined from Hill’s equation. We have taken this expression and solved it for qz to
produce an analytical expression for the ejection mass as a function of trapping and excitation frequency.
We also recognized that the expression for the ion mass during resonant ejection for a square wave driven
trap can be converted to an expression for a sinusoidal wave trap merely by multiplication by a factor of
4/�. These new expressions open up the possibility of rapid mass calibration for any method of resonant

inuso
ejection from square or s

. Introduction

Since the ion trap was introduced, it has become a major ana-
ytical tool whose utility seems to be increasing by the day. One of
he most recent advances in ion trap technology is the digital ion
rap mass spectrometer [1–3]. Richards et al. [4,5] were the first
o experimentally verify the feasibility of using rectangular wave-
orms with quadrupole mass filters. However, Ding et al. [1–3] were
he first to digitally produce square waves, amplify them with high
oltage DC pulsers and step the square wave frequency rapidly to
roduce a digital ion trap mass spectrum. The digital ion trap has
ot yet been exploited as a commercial product, but we guess that

t soon will. Current commercial ion traps operate with sinusoidal
otentials and are called SITs in this publication. Ion traps that oper-
te with digitally produced square wave potentials are called DITs.
ITs generally perform mass scans by linearly varying the voltage
f the trapping potential waveform. DITs, on the other hand, gen-
rally perform mass scans by stepping the frequency of the applied

otentials.

It is the ability to precisely produce and rapidly step the applied
aveforms that make DITs so unique. Low voltage digital wave-

orms are produced by direct digital synthesis (DDS) [6,7]. The
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high voltage waveform applied to the ring electrode is produced
by amplifying the digital waveforms with a high voltage pulser cir-
cuit. DDS technology can produce waveforms with up to 48-bit
frequency stepping resolution (248 ≈ 3 × 1014) [8]. Of course, this
resolution will never manifest itself because of all the other uncer-
tainties associated with producing waveforms; however, it does
point toward the potential of the technique. It also means that
the frequency control is so precise that the mass can be stepped
linearly during a frequency sweep if you precisely know how the
mass of the ejected ion changes with the frequency of the applied
potentials.

SITs and DITs have two basic operational modes, mass insta-
bility and resonance ejection. In the mass instability mode,
ejection occurs when the ion crosses the boundary of stability
(ˇz = 1) imposed by the ring potential. Resonance ejection occurs
by the application of an auxiliary potential, generally applied
across the endcap electrodes. When the frequency of the aux-
iliary or excitation waveform, faux, matches the frequency of
ion oscillation in the trap, the ion is resonantly ejected. Locked
resonant ejection occurs by constraining the frequency of the
auxiliary potential to values that are defined by the frequency
of the ring potential divided by an integer (faux = fring/n, where

n ≥ 3). The normal operation of a DIT varies the frequency while
holding the amplitude of the square waveform constant. Con-
versely, the normal operation mode of a SIT holds the frequency
of the sinusoidal waveform constant while varying the ampli-
tude.

http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:ReillyPT@ornl.gov
dx.doi.org/10.1016/j.ijms.2009.06.011
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During a resonant ejection scan in a SIT with fixed excitation
aveform, the ejected mass varies linearly with the voltage of the
aveform. Therefore, the mass can be easily calibrated with stan-
ards. In DITs, the ejected mass is only directly proportional to ˝−2

hen the trapping and excitation frequencies are phase locked.
his makes calibration more difficult when the system is not phase

ocked. Georinger et al. [9] produced excellent resolution (45,000)
hen they held the trapping potential of a SIT constant and very

lowly swept the excitation frequency. This technique never gained
opularity, in part, because the mass is not easily correlated with
he excitation frequency over a wide range and it is more difficult
o mass calibrate the system.

Consequently, expressions defining the ejection mass as a func-
ion of any trapping and excitation waveform are needed to help
urther develop resonance ejection in SITs and DITs. In this paper,

e provide the derivation of these expressions for ejection mass
s a function of any combination of trapping and excitation wave-
orm frequencies in SITs and DITs. Providing these expressions will
nhance the range of possibilities for mass analysis with ion traps
specially considering the advances in the direct digital synthesis
f waveforms.

. Derivation of expressions for resonant ejection from SITs
nd DITs

The Mathieu equations [10,11] completely describe the motion
f ions due to a sinusoidal trapping potential waveform at
≤ qz ≤ 0.908. The motion of the trapped ions can be described
y a low frequency (secular) oscillation imposed upon a high fre-
uency ripple. At higher values of qz (qz > 0.4), the high frequency
scillations increase in amplitude and a beat pattern is formed [12].
esonant ejection is produced with the application of an auxiliary
otential between the endcap electrodes. When the frequency of
he secular motion and the applied auxiliary potential match, the
on is resonantly ejected from the trap. The key to defining the con-
itions for resonant ejection from the trap is the definition of the
ecular frequency of the ions.

Dehmelt [13] employed what is now known as the pseudo-
otential well model to help define the ion’s secular motion. This
odel neglects the high-frequency ripple and assumes that the
otion of the ion along a coordinate can be approximated by an

on undergoing simple harmonic motion in a parabolic potential
ell. This treatment defines the secular frequency, ωsec, as a func-

ion of the Mathieu parameter, qz and the radial trapping frequency,
, in the following expression:

sec = qz˝

2
√

2
(1)

In SITs, values of qz between 0 and 0.908 yield stable ion trajec-
ories. However, the linear relation between qz and ωsec is valid only
elow qz = 0.4. Trevitt et al. [14] produced a better approximation
f the ion secular frequency in a SIT with the following formula:

sec =
(

q2
z

2 − q2
z

− 7
128

q4
z + 29

2304
q6

z

)1/2
˝

2
(2)

The derivation of this expression can be found in McLachlan’s
ext on Mathieu functions [15]. This approximation restricts the
alues of qz to be less than 0.7. Both approximations assume there
s no net DC potential between the ring and endcap electrodes. It

ould be useful to have an expression for the secular frequency of

ons for any stable value of qz. Unfortunately, an analytical expres-
ion relating qz and ωsec cannot easily be derived directly from the
athieu equation.

For digital ion traps, ion motions are determined by the applied
eriodic square wave potentials described by Hill’s equation. Ding
ass Spectrometry 286 (2009) 64–69 65

et al. [2] used matrix methods to derive an exact expression for ˇz

that easily yielded the following expression for ωsec:

ωsec = ˇz˝

2
= ˝

2�
arccos

(
cos

(
�

√
qz

2

)
cosh

(
�

√
qz

2

))
(3)

This expression is valid for all stable values of qz. Our goal here
is to derive an expression for the mass of the ion resonantly ejected
from the trap at any applied trapping and excitation frequency.
Therefore, an expression for qz as a function of ωsec is required.
Solving Eq. (3) for qz requires expanding the cos and cosh functions
in Taylor series:

cos �ˇz = cos

(
�

√
qz

2

)
cosh

(
�

√
qz

2

)
=

[ ∞∑
n=0

(−1)n

(2n)!
x2n

]

×
[ ∞∑

n=0

x2n

(2n)!

]
(4)

where x = �(qz/2)1/2. The expansions were carried out to the n = 4
term and like terms were collected. The odd n terms canceled and
the expansion product was truncated at the x8 term yielding the
following quadratic equation:

0 = 1 − cos �ˇz − x4

6
+ x8

2520
(5)

Applying the restrictions given by mass instability and ignoring
the imaginary solutions yields a single analytical equation for qz as
a function of ˝ and ωex

qz = 4
�2

{
3
2

[
35 −

√
1225 − 70

(
1 − cos

(
2�ωex

˝

))]}1/2

(6)

The validity of the equation can be checked by setting 2ωex = ˝.
We obtained the calculated value of qz = 0.7125 correctly corre-
sponding to the value of qz at the stability boundary for a DIT.
Similarly, the values of qz for frequency locked resonance ejection
can be obtained using the relation 1/n = ωex/˝ where n is an inte-
ger number greater than or equal to 3. This will reproduce the table
of ejection qz values for phase locked operation found in Ding et
al. [2]. Further validation of our equation was obtained by plotting
Ding et al.’s simulation data [3] of the ion secular frequency as a
function of qz for a trapping frequency of 500 kHz. In Fig. 1, we have
reproduced Fig. 5 from Ding et al.’s manuscript [3] and overlayed
the plot of our equation. The circles represent their data and the
dashed line represents the pseudo-potential approximation (Eq. 1)
[1]. The result of our equation is plotted as a solid line. It overlays
the line they (and we) found using Eq. (3) [3].

Given the fact the Ding et al.’s expression is exact and ours is an
approximation that results from truncation of the expansion, the
overlap of the expressions was better than expected. We wanted to
know how good our approximation was. We then used Ding et al’s
expression (Eq. (3)) to calculate ωsec for a range of qz spanning the
stable values. We used those values in our Eq. (6), under the same
conditions, to calculate qz. The original values of qz were then sub-
tracted from our calculated qz and the differences were plotted as a
function of qz in Fig. 2. At values of qz less than 0.5 the difference or
error is less than 1 × 10−5. The maximum difference at qz = 0.7125 is
approximate 4.5 × 10−5. These differences are in general much less
than the typical experimental error in ion trap mass spectrometry.

Therefore, our expression for qz in a resonant ejection experiment
may not be truly exact, but it is a better approximation than most
experiments require. We now have a valid expression to calculate
the value of qz for any ion ejected from a DIT at any value of the
trapping and excitation frequency.
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Fig. 1. A plot of the ion secular frequency in a DIT operated at a trapping frequency
of 500 kHz versus the Mathieu parameter, qz , derived from Eq. (6) is shown as a
solid black line. A plot of the ion secular frequency using the pseudo-potential well
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for any experiment that varies the voltage, trapping frequency
and excitation frequency or any combination thereof. This per-
mits rapid mass calibration for any type of mass scan in an ion
trap.

Fig. 2. A plot of the difference between our approximation of qz and its exact value
pproximation is depicted as a dashed line. The open circles represent the simulation
ata extracted from Fig. 5 in reference [3]. Our results reproduce the work of Ding
t al. [3].

We recognized that the results of our expression for qz in DITs
hould be applicable to SITs because a square wave can be repre-
ented as a Fourier expansion of sine waves:

(x) = 4
�

∞∑
n=1

1
n

sin
(

n�x

L

)
(7)

here 2L is the period of the wave and x is the frequency. The
dd terms are non-zero. Only the first term in the series affects
he stability of the ions. The contributions from the higher order
omponents at 3, 5, 7, . . . times the frequency affect the time
ependence but do not significantly affect the stability of the ions.
onsequently, the difference between the ion motion produced by a
quare wave and that produced by a sine wave is a factor of 4/�. The
actor of 4/� often occurs when comparing sinusoidal and square

ave ion traps. For example, the difference between the values of
z at the ˇ = 1 boundary for SITs and DITs is to an excellent approx-
mation 4/�. Therefore, multiplying Eq. (4) by a factor of 4/� yields
he correct expression for qz in a SIT. A direct comparison of the
ehavior of qz with respect to the excitation frequency, ωex, can be
btained from Eqs. (1) and (2) (see Fig. 3). Our expression is plotted
s a solid line. The pseudo-potential well approximation from Eq.
1) is plotted as a dotted line that deviates from our expression near
z = 0.4. The expression of Trevitt et al. [14] is plotted as a dashed
ine. It deviates from our result at qz = 0.7 where they claimed that

heir expression breaks down.

It follows that the frequency of any mass under any resonant
jection conditions in a DIT can be found by substituting Eq. (4)
nto the relationship between the ion mass, m and the Mathieu
ass Spectrometry 286 (2009) 64–69

parameter, qz

mej = 8eV

qzr̄2
0 ˝2

= 2�2eV

r̄2
0 ˝2

{
3
2

[
35 −

√
1225 − 70

(
1 − cos

(
2�ωex

˝

))]}−1/2

(8)

V is the trapping potential amplitude, e is the electron’s charge
and r̄0 defines the trap geometry. This equation was generalized
to stretched geometries, where r̄2

0 = r2
0 + 2z2

0. Setting r̄0 = r0 and
dividing the right-hand side of Eq. (8) by 2 yields the expression for
pure quadrupole field traps. The right-hand side of Eq. (8) can be
multiplied by 4/� to obtain the relation for a SIT.

The development of this expression yields some interesting
observations. For example when the dipole excitation waveform
is fixed, the ion mass at constant trapping voltage does not scale
with the reciprocal of the trapping frequency squared. Ding et al.
[2] bypassed this problem by phase locking the excitation and
trapping frequencies thereby making mej proportional to ˝−2.
Our expression permits the determination of the ejected mass
and a function of qz . Values of qz spanning the range of stable values were used
with the exact expression derived by Ding et al. [3] (Eq. (3)) to calculate the sec-
ular frequencies of the ions over that range. These secular frequencies were then
used with our approximation (Eq. (6)) to calculate qz . The difference between the
approximated and exact values is plotted as a function of qz .
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Fig. 3. A plot of the ion secular frequency in a SIT operated at a trapping frequency
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f 1000 kHz versus the Mathieu parameter, qz , derived from Eq. (6) is shown as a
olid black line. A plot of the ion secular frequency using the pseudo-potential well
pproximation (Eq. (1)) is depicted as a dotted line. The dashed line shows the results
erived from Eq. (2) from Trevitt et al. [14].

. Evaluation of the scanning methods

There are three different types of high resolution scanning meth-
ds in the literature. The first holds the trapping waveform constant
nd sweeps or steps the excitation frequency. This was the method
pplied by Goeringer et al. [9] to obtain a resolution of 45,000
sing a SIT. We found it instructive to plot the log of the ion
ass-to-charge ratio as a function of ion secular frequency for var-

ous values of the DIT trapping frequency, f = 250, 500, 750 and

000 kHz and ˝ = 2�f (see Fig. 4). For these plots, V = 750 V0-p and

¯2
0 = 0.000177 m−2. We also imposed the boundary conditions over
hich Eq. (7) is valid, 0 ≤ qz ≤ 0.7125 for a DIT [2]. Each of the

lots in Fig. 4 were truncated at the ˇz = 1 boundary that occurs
t the first minimum in the function, where ˝/2 = ωsec. Beyond

ig. 4. A log plot of the mass-to-charge ratio (m/z) versus excitation frequency for a
ange of constant trapping frequencies—1000, 750, 500, and 250 kHz.
ass Spectrometry 286 (2009) 64–69 67

that point the function is not valid. Because the derivative of the
log of x is proportional to 1/x, the slope of the log of the ejec-
tion mass is proportional to the reciprocal of the resolution, �m/m.
Log plots of the ejection mass as a function of frequency provide
a convenient method for comparing differences in resolution. The
highest resolution should be obtained when the slope of the func-
tion is the lowest. This occurs at the higher frequencies where
the changes in the excitation frequency are largest between each
nominal mass. Other studies [9,16] have also noted better resolu-
tion with increasing qz suggesting that the contribution to the line
width due to damping is smaller at higher ion oscillation frequen-
cies and the variation of those frequencies with mass is greater.
One of the studies revealed that resolution decreases in the vicin-
ity of the boundary at ˇz = 1 because the simple harmonic motion
model becomes less accurate as the amplitude at the fundamen-
tal frequency increases [9]. Presumably, the highest resolution will
occur just short of where the boundary begins to affect the ions. It
is evident that high resolution conditions exist over a limited range.
However, that range can easily be adjusted up or down in mass by
changing the trapping frequency as shown in Fig. 4. It is also noted
that while the vertical position of the high resolution region with
the lowest slope readily increases with decreasing trap frequency
and the range of excitation frequencies where high resolution is
achieved gets smaller. This is not really an issue. The frequency res-
olution should increase with decreasing frequency because as the
period of the waveform gets longer while the jitter that defines the
error in producing the wave should remain constant under ideal
conditions. This suggests that high resolution in the ultrahigh mass
range can be obtained with sufficient control of the applied wave-
forms.

The next resonant ejection method holds the excitation fre-
quency waveform constant while sweeping or stepping the
trapping conditions. In a SIT the trapping voltage is linearly swept,
while in a DIT the frequency is stepped. The frequency control in a
DIT can be so precise that the mass can be stepped linearly with
time. In both the SIT and the DIT, changing the trap conditions
changes the secular frequency of the ions while the excitation wave-
form remains constant. From the point of view of the ions, these
two techniques are essentially equivalent-excluding the difference
in the waveforms. We have plotted the log of the mass-to-charge
ratio as a function of trapping frequency in Fig. 5 for excitation fre-
quencies of 250, 200, 150 and 100 kHz at 750 V0-p. These plots are
truncated on the left-hand side because the boundary conditions,

0 ≤ qz ≤ 0.7125, require that the trapping frequency be at least dou-
ble the excitation frequency. Once again the flattest portion of the
curve should provide the best resolution provided the excitation
frequency is far enough from half of the trapping frequency so that

Fig. 5. A log plot of the mass-to-charge ratio (m/z) versus trapping frequency for a
range of constant excitation frequencies—100, 75, 50, and 25 kHz.
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he ions are not excited by the boundary at ˇz = 1. This mode can
lso be used to obtain high resolution in the ultrahigh mass range.

To complete the comparison, we plotted the log of the mass-to-
harge ratio as a function of trapping frequency at constant voltage
V = 750 V0-p) under phase-locked conditions for values of ˝/ωex

anging from 3 to 8 in Fig. 6. The curves do not shift much for
mall changes in the integer values of ˝/ωex. The highest resolu-
ion should occur where the curves are the flattest toward higher
rapping frequency and the resolution appears to increase with
ncreasing ˝/ωex.

The log plots for each scanning method were plotted on the same
cale so that direct comparisons could be made. Figs. 5 and 6 per-
it the comparison of the resolution for fixed excitation frequency

nd excitation frequency locked scanning of the trapping frequency.
he slopes of the curves in the fixed excitation frequency plots are
maller at the higher trapping frequencies than the locked curves.
his suggests that higher resolution should be achievable in fixed
xcitation frequency scanning mode. Comparison of Figs. 5 and 6 to
ig. 4 suggest that scanning the excitation frequency should provide
etter resolution than scanning the trapping frequency.

The results of our comparison of the scanning methods seem to
e in contradiction to the results of Ding et al. [3] and Londry and
arch [17] who found that the frequency locked mode of scanning

rovides better resolution than the “unlocked” methods. We point
ut that our analysis does not consider the dynamics of the ejection
rocess. We do not consider the effects of the relative phases of the
xcitation and trapping waveforms, higher order field perturbation,
as pressure, scanning direction and scanning speed on resolution.
hese factors have been covered extensively in the literature for
ITs and their treatments are extendable to DITs. Furthermore, we
o not consider the case where the duty cycles of the DIT wave-

orms were optimized. We merely suggest that, for a given step
ize of the waveform frequency, scanning the excitation waveform
hile holding the trapping waveform constant will result in the

mallest mass step; however, this may not necessarily provide the
est resolution. The dynamics of the ions before and during the
jection process have to be considered for a complete discussion of
esolution.

The results in Figs. 4–6 are completely generalizable to SITs.
owever, commercial SITs operate with resonantly tuned rf cir-

uits that scan by sweeping the trapping voltage. Scanning the trap
requency is not generally an option. However, that was never a con-

ern because the ion mass is always a linear function of the trapping
f voltage no matter what excitation frequency is used. We illus-
rate that point in Fig. 7 by plotting the ion mass for a 1 MHz SIT
s a function of trapping voltage for excitation frequencies of 500,
00, 100, 50 and 25 kHz. Before now, the slopes of these curves were

ig. 6. A log plot of the mass-to-charge ratio (m/z) versus trapping frequency for
hase locked resonant ejection at (˝/ω) = 3, 4, 5, 6, 7 and 8.
Fig. 7. A plot of the mass-to-charge ratio (m/z) versus trapping voltage for excitation
waveform frequencies, fex = 25, 50, 100, 200, 500 kHz.

not easily predicted; however, that was never an issue because they
could be determined with the measurement of a couple of known
analytes. Whether or not the excitation waveform is phase locked
has no affect on the rate of change of the ejection mass with trap
voltage. Therefore, it will not affect the mass step resolution even
though it has been shown to dramatically affect the ultimate mass
resolution achieved [17]. Phase locking affects the dynamics of the
ejection process not the mass step.

In a previous publication [18], we pushed resonant ejection to
its limits in a 1 MHz SIT using the aerosol MALDI technique to pro-
duce ions inside the trap. Ions up to myoglobin (m/z = 16.9 kDa) were
produced and trapped. Trapping was successful because the trap-
ping voltage was set to its maximum, at approximately 7500 V0-p,
to maximize the pseudo-potential well depth during the MALDI
process. The trapping potential was then lowered and an auxil-
iary potential was applied to the endcap electrodes at constant
frequency and voltage during the rf voltage ramp. We found that
the resolution degraded with increasing mass. Good signal and res-
olution were obtained up to approximately 3.5 kDa (insulin chain B)
beyond which the quality of the data deteriorated rapidly. We sug-
gested that the pseudo-potential well depth preceding and during
ion ejection was the major factor that defined the resolution and
the signal-to-noise ratio. Unfortunately, the rf voltage and there-
fore the pseudo-potential well depth had to be decreased in order
to scan the masses out of the trap.

We could have maintained the rf voltage and scanned the ions
out of the trap by sweeping or stepping the auxiliary potential
frequency on the endcap electrodes if we had an easy way of cali-
brating the instrument. We now have that. This scanning method
will markedly enhance the mass range of current commercial ion
traps. To demonstrate this we have calculated the resonant excita-
tion frequency as a function of mass for a 7500 V0-p, 1 MHz trapping
potential in Fig. 8(a). The value of qz as a function of m/z is plotted
in Fig. 8(b). The pseudo-potential well depth as a function of m/z is
plotted in Fig. 8(c). This assumes the pseudo-potential well approx-
imation is accurate for all bound values of qz where the well depth
D = qzV/8. However, it is well known that this approximation is only
good up to qz = 0.4. The truncation of the use of this approximation
at or below qz = 0.4 was due to the inability to easily and reliably cal-
culate qz. That no longer is an issue. Therefore, the pseudo-potential

well depth can be calculated beyond qz = 0.4 with the above expres-
sion and our calculation for qz. The well depth in reality continues
to increase after qz = 0.4 and then rapidly decreases to zero near the
boundary at ˇz = 1 where the high frequency oscillations become
dominant. Nonetheless, the behavior of the ions where the well
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epth is large is not an issue. Real problems with resolution and sen-
itivity occur when the well depth becomes too small. Our results
uggest that the well depth is greater than 100 V at 10 kDa and is

pproximately 30 V at 40 kDa (see Fig. 8(c)). Our results from our
erosol MALDI suggest that good resolution should be achievable
ell past 10 kDa and could reach as high as 40 kDa or more. That

epresents a big improvement in mass range that could be extended
ven higher with a lower frequency ion trap.

[

[
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4. Conclusions

We have derived analytical expressions for the ejection mass
from sinusoidal and square wave ion trap under any set of resonant
ejection conditions for stable values of qz. These expressions were
then used to evaluate resonance scanning methods in terms of mass
step resolution. Our results suggest that ion traps operate better at
higher values of excitation frequency or qz. In DITs, where mass
scans are generally performed by stepping the trapping frequency,
phase locked resonance scanning yields lower mass step resolution
than fixing the excitation waveform. However, scanning the excita-
tion waveform, while fixing the trapping waveform, produced even
better mass step resolution. We have also extended our analysis to
SITs and showed that we are now able to calculate the slope of the
ejection mass versus trap voltage. Our extension of the analysis to
SITs suggests a viable method for extending the operational mass
range for commercial ion traps. Our analysis suggests that a 1 MHz
trap could yield well resolved mass spectra up to 10 kDa and higher
by maximizing the trapping voltage and scanning the excitation
frequency. The question remaining is, where does the resolution
break down and why? We further suggest that lower frequency
traps should yield a much higher mass range. An improvement in
mass range and resolution of ion traps opens new possibilities for
biological mass analysis especially for top down proteomics.
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